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In this paper, the sufficient conditions that guarantee the convergence of the variational iteration method
when applied to solve a coupled system of nonlinear partial differential equations are presented. Especial
attention is given to the error bound of the nth term of the resultant sequence. Numerical examples to show
the efficiency of the method are presented.
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1. Introduction

In recent years, much attention has been devoted to the study of the variational iteration method
(VIM) given by He (see [10–12] and the references sited therein), for numerically solving a
wide range of problems whose mathematical models yield differential equations or a system of
differential equations [2,3]. The main reasons for the success of these methods are: there is no
need for discretization of the variables and no requirement of large computer memory. Many
authors [1,2,4,9,14–23] have pointed out that the VIM can overcome the difficulties arising in the
calculation of Adomian’s polynomials in Adomian’s decomposition method [5–7]. We aim, in this
work, to study the convergence of the VIM when applied to solve some nonlinear problems. To
illustrate the analysis of the VIM, we limit ourselves to consider the following system of nonlinear
equations in the type:

L1u + R1u + N1(u) + F1(u, v) = 0, (1)

L2v + R2v + N2(v) + F2(u, v) = 0, (2)

with specified initial conditions, where Li and Ri (i = 1, 2) are linear bounded operators, i.e., it
is possible to find numbers mi, ni > 0 such that ‖Liu‖ ≤ mi‖u‖, ‖Riu‖ ≤ ni‖u‖. The nonlinear
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terms N1(u) and N2(v) are Lipschitz continuous with |N1(u) − N1(θ)| < r1|u − θ | and |N2(v) −
N2(θ)| < r2|v − θ |, ∀t ∈ J = [0, T ]. Also, the coupled nonlinear terms Fi(u, v) are Lipschitz
continuous with |F1(u, v) − F1(θ, v)| < s1|u − θ | and |F2(u, v) − F2(u, θ)| < s2|v − θ |, ∀t ∈
J = [0, T ]. The VIM gives the possibility to write the solution of the Equations (1) and (2) with
the aid of the correction functionals:

up = up−1 +
∫ t

0
λ1(τ )[L1up−1 + R1ũp−1 + N1(ũp−1) + F1(ũp−1, ṽp−1)] dτ, (3)

vp = vp−1 +
∫ t

0
λ2(τ )[L2vp−1 + R2ṽp−1 + N2(ṽp−1) + F2(ũp−1, ṽp−1)] dτ. (4)

It is obvious that the successive approximations up and vp, p > 0 (the subscript p denotes the pth
order approximation), can be established by determining λ1 and λ2 general Lagrange multipliers,
which can be identified optimally via the variational theory. The functions ũp and ṽp are restricted
variations, which means that δũp = δṽp = 0. Therefore, we first determine the Lagrange mul-
tipliers that will be identified optimally via integration by parts. The successive approximations
up and vp, p ≥ 1, of the solutions u(x, t) and v(x, t) will be readily obtained upon using the
Lagrange multiplier obtained and by using any selective functions u0 and v0. Consequently, the
exact solution may be obtained by using

u = lim
p→∞ up, v = lim

p→∞ vp. (5)

In what follows, we will apply the VIM to the modified Korteweg-de Vries equation (mKdV) and
the coupled system of Burger’s equations to illustrate the strength of the method and to establish
the exact solutions for these nonlinear problems.

Now, to illustrate how to find the values of the Lagrange multipliers λ1 and λ2, we will consider
the following case, which depends on the order of the operators Li (i = 1, 2) in the Equations (1)
and (2), and we will study the case of the operators Li = ∂/∂t without loss of generality.

Making the above correction functional stationary, and note that δũp = δṽp = 0, we obtain

δup = δup−1 + δ

∫ t

0
λ1(τ )

[
∂up−1

∂τ
+ R1ũp−1 + N1(ũp−1) + F1(ũp−1, ṽp−1)

]
dτ

= δup−1 + [λ1(τ )δup−1]τ=t −
∫ t

0
λ̇1(τ )[δup−1] dτ = 0,

δvp = δvp−1 + δ

∫ t

0
λ2(τ )

[
∂vp−1

∂τ
+ R2ṽp−1 + N2(ṽp−1) + F2(ũp−1, ṽp−1)

]
dτ

= δvp−1 + [λ2(τ )δvp−1]τ=t −
∫ t

0
λ̇2(τ )[δvp−1] dτ = 0,

where δũp and δṽp are considered as restricted variations, i.e. δũp = δṽp = 0 yields the following
stationary conditions:

λ̇1(τ ) = 0, 1 + λ1(τ )|τ=t = 0, (6)

λ̇2(τ ) = 0, 1 + λ2(τ )|τ=t = 0. (7)

The equations in (6) are called Lagrange–Euler equations and the natural boundary condition
respectively, the Lagrange multipliers, therefore,

λ1(τ ) = λ2(τ ) = −1. (8)
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Now, the following variational iteration formula can be obtained:

up = up−1 −
∫ t

0
[L1up−1 + R1up−1 + N1(up−1) + F1(up−1, vp−1)] dτ, (9)

vp = vp−1 −
∫ t

0
[L2vp−1 + R2vp−1 + N2(vp−1) + F2(up−1, vp−1)] dτ. (10)

We start with an initial approximation, and by using the above iteration formulas (9) and (10), we
can directly obtain the other components of the solution.

2. Convergence analysis of the VIM

In this section, we will present some theorems and remarks about the convergence of the VIM.
The VIM changes the differential equation to a recurrence sequence of functions. The limit of this
sequence is considered as the solution of the partial differential equation.

Definition 1 A variable quantity v is a functional dependent on a function u(x) if for each
function u(x) of a certain class of functions u(x) there corresponds a value v. The variation of a
functional v[u(x)] is defined in the following form:

δv[u(x)] =
[

∂

∂α
v[u(x) + αδu]

]
α=0

. (11)

As a well-known result, we have [7].

Theorem 1 [8] If a functional v[u(x)] that has a variation achieves a maximum or a minimum
at u = u0, where u(x) is an interior point of the domain of definition of the functional, then at
u = u0,

δv = 0. (12)

Lemma 1 Let A : U → V be a bounded linear operator and let {up} be a convergent sequence
in U with a limit u, then up → u in U implies that A(up) → A(u) in V.

Proof Given the fact that up → u.
Now, ‖Aup − Au‖V = ‖A(up − u)‖V ≤ ‖A‖‖up − u‖U .
Hence limp→∞ ‖Aup − Au‖V ≤ ‖A‖ limp→∞ ‖up − u‖U = 0, so that A(up) → A(u). �

Theorem 2 (uniqueness theorem) The problems (1) and (2) has a unique solution whenever
0 < αi < 1, (i = 1, 2) where,

αi = (ni + ri + si)T .

Proof Since the solution of the Equations (1) and (2) can take the following forms

u = f1(x) − L−1
1 [R1u + N1(u) + F1(u, v)],

v = f2(x) − L−1
2 [R2v + N2(v) + F2(u, v)],

where the functions f1(x) and f2(x) are the solutions of the homogenous equations L1u = 0 and
L2v = 0, respectively, and the inverse operators L−1

i are defined by L−1
i (•) = ∫ t

0 (•)dτ .
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Now let, (u, v) and (u∗, v∗) be two different solutions of Equations (1) and (2) then by using
the above equations, we get the following:

|u − u∗| =
∣∣∣∣−

∫ t

0
[R1(u − u∗) + N1(u) − N1(u

∗) + F1(u, v) − F1(u
∗, v)] dt

∣∣∣∣
≤

∫ t

0
[|R1(u − u∗)| + |N1(u) − N1(u

∗)| + |F1(u, v) − F1(u
∗, v)|] dt

≤ (n1|u − u∗| + r1|u − u∗| + s1|u − u∗|)T
≤ α1|u − u∗|.

|v − v∗| =
∣∣∣∣−

∫ t

0
[R2(v − v∗) + N2(v) − N2(v

∗) + F2(u, v) − F2(u, v∗)] dt

∣∣∣∣
≤

∫ t

0
[|R2(v − v∗)| + |N2(v) − N2(v

∗)| + |F2(u, v) − F2(u, v∗)| dt

≤ (n2|v − v∗| + r2|v − v∗| + s2|v − v∗|)T
≤ α2|v − v∗|,

from which we get (1 − α1)|u − u∗| ≤ 0, (1 − α2)|v − v∗| ≤ 0. Since 0 < αi < 1, then |u −
u∗| = 0, |v − v∗| = 0 implies, u = u∗ and v = v∗and this complete the proof. �

Now, to prove the convergence of the VIM, we will rewrite Equations (9) and (10) in the
operator forms as follows:

up = A1[up−1], (13)

vp = A2[vp−1], (14)

where the operators Ai take the following forms:

A1[u] = −
∫ t

0
[L1u + R1u + N1(u) + F1(u, v)] dτ, (15)

A2[v] = −
∫ t

0
[L2v + R2v + N2(v) + F2(u, v)] dτ. (16)

Theorem 3 [Banach’s fixed point theorem] (convergence theorem) Assume that X is a Banach
space and Ai : X → X where (i = 1, 2) are nonlinear mapping, and suppose that

‖Ai[u] − Ai[v]‖ ≤ γi‖u − v‖, ∀u, v ∈ X. (17)

For some constants γi = αi + miT < 1. Then Ai have a unique fixed point. Furthermore, the
sequences (13) and (14) using the VIM with an arbitrary choice of u0, v0 ∈ X converges to the
fixed point of Ai , respectively and

‖up − uq‖ ≤
[

γ
q

1

1 − γ1

]
‖u1 − u0‖, (18)

‖vp − vq‖ ≤
[

γ
q

2

1 − γ2

]
‖v1 − v0‖. (19)

Proof Denoting by (C[J ], ‖ • ‖) the Banach space of all continuous functions on J with the
norm defined by ‖f (t)‖ = maxt∈J |f (t)|.
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1124 N.H. Sweilam and M.M. Khader

We prove that the sequence {up} is a Cauchy sequence in this Banach space

‖up − uq‖ = max
t∈J

|up − uq |

= max
t∈J

∣∣∣∣−
∫ t

0
[L1(up−1 − uq−1) + R1(up−1 − uq−1) + N1(up−1)

− N1(uq−1) + F1(up−1, v) − F1(uq−1, v)] dτ

∣∣∣∣
≤ max

t∈J

∫ t

0
[|L1(up−1 − uq−1)| + |R1(up−1 − uq−1)|

+ |N1(up−1) − N1(uq−1)| + |F1(up−1, v) − F1(uq−1, v)|] dτ

≤ max
t∈J

∫ t

0
[(m1 + n1 + r1 + s1)|up−1 − uq−1|] dτ

≤ γ1‖up−1 − uq−1‖.
Let p = q + 1, then

‖uq+1 − uq‖ ≤ γ1‖uq − uq−1‖ ≤ γ 2
1 ‖uq−1 − uq−2‖ ≤ · · · ≤ γ

q

1 ‖u1 − u0‖.
Hence by the triangle inequality and the formula for the sum of geometric progression, we obtain
for p > q, we have

‖up − uq‖ ≤ ‖uq+1 − uq‖ + ‖uq+2 − uq+1‖ + · · · + ‖up − up−1‖
≤ [γ q

1 + γ
q+1
1 + · · · + γ

p−1
1 ]‖u1 − u0‖

≤ γ
q

1 [1 + γ1 + γ 2
1 + · · · + γ

p−q−1
1 ]‖u1 − u0‖

≤ γ
q

1

[
1 − γ

p−q

1

1 − γ1

]
‖u1 − u0‖.

Since 0 < γ1 < 1 so, 1 − γ
p−q

1 < 1,

‖up − uq‖ ≤
[

γ
q

1

1 − γ1

]
‖u1 − u0‖.

But ‖u1 − u0‖ < ∞ so, as q → ∞ then ‖up − uq‖ → 0. We conclude that {up} is a Cauchy
sequence in C[J ], so, the sequence converges.Also, in the same way, we can prove the convergence
of the sequence in Equation (14) and obtain the relation (19) and the proof is complete. �

Theorem 4 (error estimate theorem) The maximum absolute errors of the approximate solutions
up and vp to problems (1) and (2) are estimated to be

max
t∈J

|uexact − up| < β1, (20)

max
t∈J

|vexact − vp| < β2, (21)

where

β1 = γ
q

1 T

1 − γ1
[(m1 + n1)‖u0‖ + h1 + k1] and β2 = γ

q

2 T

1 − γ2
[(m2 + n2)‖v0‖ + h2 + k2], and

h1 = max
t∈J

|N1(u0)|, h2 = max
t∈J

|N2(v0)|, ki = max
t∈J

|Fi(u0, v0)|.
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Proof From Theorem 3 and inequality (18), we obtain as p → ∞ then up → uexact, vp →
vexact and

‖u1 − u0‖ = max
t∈J

∣∣∣∣−
∫ t

0
[L1u0 + R1u0 + N1(u0) + F1(u0, v0)] dτ

∣∣∣∣
≤ max

t∈J

∫ t

0
[|L1u0| + |R1u0| + |N1(u0)| + |F1(u0, v0)|] dτ

≤ T [(m1 + n1)‖u0‖ + h1 + k1].

‖v1 − v0‖ = max
t∈J

∣∣∣∣−
∫ t

0
[L2v0 + R2v0 + N2(v0) + F2(u0, v0)] dτ

∣∣∣∣
≤ max

t∈J

∫ t

0
[|L2v0| + |R2v0| + |N2(v0)| + |F2(u0, v0)|] dτ

≤ T [(m2 + n2)‖v0‖ + h2 + k2],

so, the maximum absolute errors in the interval J are

‖uexact − up‖ = max
t∈J

|uexact − up| < β1,

‖vexact − vp‖ = max
t∈J

|vexact − vp| < β2.

This completes the proof. �

The prior error bounds (20) and (21) can be used at the beginning of a calculation for estimating
the number of steps necessary to obtain the required accuracy.

3. Numerical test examples

In order to illustrate the performance of the VIM in solving nonlinear partial differential
equations and justify the accuracy and efficiency of the method, we consider the following
examples.

Example 1 Consider the following homogenous general form of the mKdV equation
[13,21]:

ut + 6u2ux + uxxx = 0, (22)

with an initial condition

u(x, 0) = √
c sech[k + √

c x],

for all c ≥ 0, where k is an arbitrary constant. The exact solution of Equation (22) is given by

u(x, t) = √
c sech[k + √

c(x − ct)].
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1126 N.H. Sweilam and M.M. Khader

To solve Equation (22) by means of the VIM, we construct a correction functional that reads

up+1(x, t) = up(x, t) +
∫ t

0
λ(τ)[upτ + 6ũ2

pũpx + ũpxxx] dτ, p ≥ 0. (23)

By the same way (in Section 1), the Lagrange multiplier λ, therefore, can be readily identified

λ(τ) = −1. (24)

Now, the following variational iteration formula can be obtained

up+1(x, t) = up(x, t) −
∫ t

0
[upτ + 6u2

pupx + upxxx] dτ. (25)

We start with an initial approximation u0(x, t) = u(x, 0) and by using the above iteration formula
(25), we can directly obtain the other components as

u0(x, t) = √
c sech[k + √

cx],
u1(x, t) = u0(x, t) + c2t sech[k + √

c x] tanh[k + √
c x],

u2(x, t) = u1(x, t) + 1

64
c3.5t2 sech7[k + √

c x](−14 + 84c3t2

− (17 + 96c3t2) cosh[2(k + √
c x)] + 2(−1 + 6c3t2) cosh[4(k + √

c x)]
+ cosh[6(k + √

c x)] − 224c1.5t sinh[2(k + √
c x)]

+ 48c1.5t sinh[4(k + √
c x)]), . . .

and so on, in the same manner, the rest of components of the VIM were obtained. In the most
cases, the closed form of the solution may be obtained.

In order to numerically verify whether the proposed methodology led to a higher accuracy,
we can evaluate the numerical solutions using p = 2 terms of Equation (25). Table 1 shows the
analytical solution, numerical solution and the absolute error of the value of the time t = 1.5.
We achieved a very good approximation with the actual solution of the Equation (22) by using
two terms only of the iteration equation derived above. It is evident that the overall errors can be
made smaller by adding new terms of the iteration formula. The numerical approximation shows
a high degree of accuracy and in most cases of up(x, t), the p-term approximation is accurate for
quite low values of p, and the solutions are very rapidly convergent by utilizing the VIM. The
numerical results we obtained justify the advantage of this method, and even in the few terms,
approximation is accurate.

Also, the surface Figure 1 presents the error of the solution in the intervals 0 ≤ x ≤ 10 and
0 ≤ t ≤ 3.

Table 1. Comparison between the exact solution u(x, t) and the
approximate solution up(x, t).

x up uexaxt |up − uexact|
0.0 0.00661129 0.00817341 1.56212 e−03
2.0 0.000894721 0.00110617 2.11447 e−04
4.0 0.000121087 0.00014970 2.86163 e−05
6.0 0.000016387 0.00002026 3.87280 e−06
8.0 2.21779 e−06 2.74192 e−06 5.24126 e−07

10.0 3.00146 e−07 3.71079 e−07 7.09328 e−08
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Figure 1. The surface error at 0 ≤ x ≤ 10 and 0 ≤ t ≤ 3.

It must be noted also that the VIM used here gives the possibility of obtaining an analytical
satisfactory solution for which the other techniques of calculation are more laborious and the
results contain a great complexity.

Example 2 Consider the following coupled system of Burger’s equations in a homogeneous
form:

ut − uxx − 2uux + (uv)x = 0, (26)

vt − vxx − 2vvx + (uv)x = 0. (27)

Subject to the following initial conditions

u(x, 0) = v(x, 0) = sin(x). (28)

Equations (26) and (27) are the same as Equations (1) and (2) where Li = ∂/∂t and Ri = ∂2/∂x2,
the nonlinear terms N1(u) = −2uux and N2(v) = −2vvx , and the coupled nonlinear terms
Fi(u, v) = (uv)x , (i = 1, 2).

To solve the Equations (26) and (27) by means of the VIM, we construct a correction functional
which reads as follows:

up+1(x, t) = up(x, t) +
∫ t

0
λ1(τ )[upτ − ũpxx − 2ũpũpx + (ũpṽp)x] dτ, p ≥ 0. (29)

vp+1(x, t) = vp(x, t) +
∫ t

0
λ2(τ )[vpτ − ṽpxx − 2ṽpṽpx + (ũpṽp)x] dτ, p ≥ 0. (30)

In the same way, the Lagrange multipliers λ1 and λ2, therefore, can be readily identified:

λ1(τ ) = λ2(τ ) = −1. (31)
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1128 N.H. Sweilam and M.M. Khader

Figure 2. The behaviour of the approximate solutions u3(x, t) and v3(x, t) obtained by the VIM for t = 0.5 in the
interval −20 ≤ x ≤ 20.

Figure 3. The error of the solutions at t = 0.75 in −10 ≤ x ≤ 10.
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Now, the following variational iteration formula can be obtained:

up+1(x, t) = up(x, t) −
∫ t

0
[upτ − upxx − 2upupx + (upvp)x] dτ, p ≥ 0. (32)

vp+1(x, t) = vp(x, t) −
∫ t

0
[vpτ − vpxx − 2vpvpx + (upvp)x] dτ, p ≥ 0. (33)

We start with initial approximations u0(x, t) = u(x, 0) and v0(x, t) = v(x, 0) and by using the
above iteration formulas (32) and (33), we can directly obtain the other components of the solution:

u0(x, t) = v0(x, t) = sin(x),

u1(x, t) = v1(x, t) = (1 − t) sin(x),

u2(x, t) = v2(x, t) =
(

1 − t + t2

2!
)

sin(x),

u3(x, t) = v3(x, t) =
(

1 − t + t2

2! − t3

3!
)

sin(x),

and so on; in the same manner, the rest of components of the VIM were obtained. The closed form
of the solutions given by

u(x, t) = lim
p→∞ up(x, t) = e−t sin(x),

v(x, t) = lim
p→∞ vp(x, t) = e−t sin(x).

This result can be verified through the direct substitution.
The behaviour of the solutions obtained by the VIM (where p = 3) is shown for t = 0.5 in the

interval −20 ≤ x ≤ 20 in Figure 2.
Also, the error of the solutions at t = 0.75 in the interval −10 ≤ x ≤ 10 is shown in Figure 3,

where the error of the solution u(x, t) is seen in the top of the figure and the error of the solution
v(x, t) in the bottom of the figure.

4. Conclusions

In this paper, the convergence analysis of the VIM when applied to solve some nonlinear problems
is presented. Moreover, the error bound of the nth term of the resultant sequence is given. The
modified KdV equation and the coupled system of Burger’s equations are considered here as
test examples to illustrate the performance of the VIM in solving nonlinear partial differential
equations and to justify the accuracy and efficiency of the method. The main conclusion is that
the VIM is a fast convergent method when applied to solve a wide range of nonlinear problems.

References

[1] T.A. Abassy, M.A. El-Tawil, and H. El Zoheiry, Solving nonlinear partial differential equations using the modified
variational iteration Padé technique, J. Comput. Appl. Math. 207 (2007), pp. 73–91.

[2] M. A. Abdou and A.A. Soliman, Variational iteration method for solving Burger’s and coupled Burger’s equations,
J. Comput. Appl. Math. 181 (2005), pp. 245–251.

[3] R.K. Bhattacharyya and R.K. Bera, Application of Adomian method on the solution of the elastic wave propagation
in elastic bars of finite length with randomly and linearly varying Young’s modulus, Appl. Math. Lett. 17 (2004),
pp. 703–709.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
i
l
a
m
,
 
N
a
s
s
e
r
 
H
a
s
s
a
n
]
 
A
t
:
 
2
0
:
0
6
 
1
6
 
M
a
y
 
2
0
1
0



1130 N.H. Sweilam and M.M. Khader

[4] J. Biazar and H. Ghazvini, He’s variational iteration method for solving hyperbolic differential equations, Int. J.
Nonlinear Sci. Numer. Simul. 8(3) (2007), pp. 311–314.

[5] N. Bildik and A. Konuralp, The use of variational iteration method, differential transform method and Adomian
decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci.
Numer. Simul. 7(1) (2006), p. 27–34.

[6] S.M. El-Sayed and D. Kaya, On the numerical solution of the system of two dimensional Burger’s equations by the
decomposition method, Appl. Math. Comput. 158 (2004), pp. 101–109.

[7] L. Elsgolts, Differential Equations and the Calculus of Variations, Translated from the Russian by G. Yankovsky,
Mir Publishers, Moscow, 1977.

[8] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
[9] D.D. Ganji, G.A. Afrouzi, and R.A. Talarposhti, Application of He’s variational iteration method for solving the

reaction diffusion equation with ecological parametersm, Comput. Math. Appl. 54 (2007), pp. 1010–1017.
[10] J.H. He, Variational iteration method – a kind of non-linear analytical technique: Some examples, Internat.

J. Non-Linear Mech. 34 (1999), pp. 699–708.
[11] J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114(2–3)

(2000), pp. 115–123.
[12] J.H. He and X.-H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method,

Chaos Solitons Fractals 29 (2006), pp. 108–113.
[13] D. Kaya and I.E. Inan, A convergence analysis of the ADM and an application, Appl. Math. Comput 161 (2005),

pp. 1015–1025.
[14] Z.M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of

fractional order, Internat. J. Nonlinear Sci. Numer. Simul. 7(1) (2006), pp. 27–34.
[15] A. Sadighi and D.D. Ganji, Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation

and variational iteration methods, Internat. J. Nonlinear Sci. Numer. Simul. 8(3) (2007), pp. 435–445.
[16] A.A. Soliman, Numerical simulation of the generalized regularized long wave equation by He’s variational iteration

method, Math. Comput. Simulation 70 (2005), pp. 119–124.
[17] N.H. Sweilam, Variational iteration method for solving cubic nonlinear Schrödinger equation, J. Comput. Appl.

Math. 207 (2007), pp. 155–163.
[18] N.H. Sweilam, Harmonic wave generation in nonlinear thermo-elasticity by variational iteration method and

Adomian’s method, J. Comput. Appl. Math. 207 (2007), pp. 64–72.
[19] N.H. Sweilam and M.M. Khader, Variational iteration method for one dimensional nonlinear thermo-elasticity,

Chaos Solitons Fractals 32 (2007), pp. 145–149.
[20] N.H. Sweilam, M.M. Khader, and R.F. Al-Bar, Numerical studies for a multi-order fractional differential equation,

Phys. Lett. A 371 (2007), pp. 26–33.
[21] H. Tari, D.D. Ganji, and M. Rostamian, Approximate solutions of K (2,2), KdV and modified KdV equations by

variational iteration method, homotopy perturbation method and homotopy analysis method, Internat. J. Nonlinear
Sci. Numer. Simul. 8(2) (2007), pp. 203–210.

[22] M. Tatari and M. Dehghan, On the convergence of He’s variational iteration method, J. Comput. Appl. Math. 207
(2007), pp. 121–128.

[23] E. Yusufoglu, Variational iteration method for construction of some compact and noncompact structures of Klein–
Gordon equations, Internat. J. Nonlinear Sci. Numer. Simul. 8(2) (2007), pp. 153–158.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
i
l
a
m
,
 
N
a
s
s
e
r
 
H
a
s
s
a
n
]
 
A
t
:
 
2
0
:
0
6
 
1
6
 
M
a
y
 
2
0
1
0


